Nonparametric confidence intervals for monotone functions
نویسندگان
چکیده
منابع مشابه
Nonparametric Confidence Intervals for Monotone Functions
We study nonparametric isotonic confidence intervals for monotone functions. In [1] pointwise confidence intervals, based on likelihood ratio tests for the restricted and unrestricted MLE in the current status model, are introduced. We extend the method to the treatment of other models with monotone functions, and demonstrate our method by a new proof of the results in [1] and also by construct...
متن کاملConfidence Intervals for Nonparametric Regression
In non-parametric function estimation, providing a confidence interval with the right coverage is a challenging problem. This is especially the case when the underlying function has a wide range of unknown degrees of smoothness. Here we propose two methods of constructing an average coverage confidence interval built from block shrinkage estimation methods. One is based on the James-Stein shrin...
متن کاملAn Adaptation Theory for Nonparametric Confidence Intervals
A nonparametric adaptation theory is developed for the construction of confidence intervals for linear functionals. A between class modulus of continuity captures the expected length of adaptive confidence intervals. Sharp lower bounds are given for the expected length and an ordered modulus of continuity is used to construct adaptive confidence procedures which are within a constant factor of ...
متن کاملAdaptive Confidence Bands for Nonparametric Regression Functions.
A new formulation for the construction of adaptive confidence bands in non-parametric function estimation problems is proposed. Confidence bands are constructed which have size that adapts to the smoothness of the function while guaranteeing that both the relative excess mass of the function lying outside the band and the measure of the set of points where the function lies outside the band are...
متن کاملEmpirical Likelihood Confidence Intervals for Nonparametric Functional Data Analysis
We consider the problem of constructing confidence intervals for nonparametric functional data analysis using empirical likelihood. In this doubly infinite-dimensional context, we demonstrate the Wilks’s phenomenon and propose a bias-corrected construction that requires neither undersmoothing nor direct bias estimation. We also extend our results to partially linear regression involving functio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 2015
ISSN: 0090-5364
DOI: 10.1214/15-aos1335